Precedences (from high to low)
(1) [x := e] (Textual Substitution)
(2) . (function application)
(3) Unary Prefix Operators + - ¬ # ~ P
(4) **
(5) ∗ / ÷ mod gcd
(6) + - ∪ ∩ × ∘ ∙
(7) ↓ ↑
(8) #
(9) ▹ ◃ ^
(10) = < > ϵ ⊂ ⊆ ⊃ ⊇ |
(11) ∨ ∧
(12) ⇒ ⇐
(13) ≡
Notes: All non associative prefix binary operators associate to the left, except ** , ◃ and ⇒ which associate to the right.
All operators on lines 10, 12 and 13 may have a slash / through them to denote negation.
Thus b ≢ c is equivalent to ¬ ( b ≡ c )
A core subset of the above, omitting unnecessary symbols, which is used to prove the theorems of the logic itself is as follows
(a) [x := e] (Textual Substitution)
(b) . (function application)
(c) ¬
(d) ∗ /
(e) =
(f) ∨ ∧
(g) ⇒ ⇐
(h) ≡
prev: next: Textual Substitution
No comments:
Post a Comment