Precedences (from high to low)
(1) [x := e] (Textual Substitution)
(2) . (function application)
(3) Unary Prefix Operators + - \( \neg \) # ~ \( \mathcal { P } \)
(4) **
(5) \( \ast \) / \( \div \) mod gcd
(6) + - \( \cup \) \( \cap \) \( \times \) \( \circ \) \( \bullet \)
(7) \( \downarrow \) \( \uparrow \)
(8) #
(9) \( \triangleright \) \( \triangleleft \) ^
(10) = < > \( \epsilon \) \( \subset \) \( \subseteq \) \( \supset \) \( \supseteq \) |
(11) \( \vee \) \( \wedge \)
(12) \( \Rightarrow \) \( \Leftarrow \)
(13) \( \equiv \)
Notes: All non associative prefix binary operators associate to the left, except ** , \( \triangleleft \) and \( \Rightarrow \) which associate to the right.
All operators on lines 10, 12 and 13 may have a slash / through them to denote negation.
Thus b \( \not\equiv \) c is equivalent to \( \neg \) ( b \( \equiv \) c )
A core subset of the above, omitting unnecessary symbols, which is used to prove the theorems of the logic itself is as follows
(a) [x := e] (Textual Substitution)
(b) . (function application)
(c) \( \neg \)
(d) \( \ast \) /
(e) =
(f) \( \vee \) \( \wedge \)
(g) \( \Rightarrow \) \( \Leftarrow \)
(h) \( \equiv \)
prev: next: Textual Substitution
No comments:
Post a Comment