Precedences (from high to  low)
(1) [x := e] (Textual Substitution)
(2) . (function application) 
(3) Unary Prefix Operators + - \( \neg \) # ~ \( \mathcal { P } \)
(4) **
(5) \( \ast \) / \( \div \) mod gcd
(6) + - \( \cup \) \( \cap \) \( \times \) \( \circ \) \( \bullet \)
(7) \( \downarrow \) \( \uparrow \)
(8) #
(9) \( \triangleright \) \( \triangleleft \) ^
(10) = < >  \( \epsilon \) \( \subset \) \( \subseteq \) \( \supset \) \( \supseteq \) | 
(11) \( \vee \)  \( \wedge \)  
(12) \( \Rightarrow \) \( \Leftarrow \)
(13) \( \equiv \)
Notes: All non associative prefix binary operators associate to the left, except ** , \(  \triangleleft \) and \( \Rightarrow \) which associate to the  right.
All operators on lines 10, 12 and 13 may have a slash /  through them to denote negation.
Thus b \( \not\equiv \) c is equivalent to \( \neg \) ( b \( \equiv \) c )
A core subset of the above, omitting unnecessary symbols,  which is used to prove the theorems of the logic itself is as follows
(a) [x := e] (Textual Substitution)
(b)  . (function application) 
(c) \( \neg \) 
(d)  \( \ast \)  / 
(e) = 
(f)  \( \vee \)  \( \wedge \)  
(g) \( \Rightarrow \) \( \Leftarrow \)
(h) \( \equiv \)
prev: next: Textual Substitution
 
No comments:
Post a Comment