(1) Axiom Symmetry of \(\vee\): p \(\vee\) q \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) q \(\vee\) p
(2) Axiom Associativity of \(\vee\): p \(\vee\) (q \(\vee\) r) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) (p \(\vee\) q ) \(\vee\) r
(3) Axiom Idempotency of \(\vee\): p \(\vee\) p \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p
(4) Axiom Distributivity of \(\frac{\vee}{\equiv}\): p \(\vee\) ( q \(\equiv\) r) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) (p \(\vee\) q) \(\equiv\) (p \(\vee\) r)
(5) Axiom Excluded Middle p \(\vee\) \(\neg\)p
(6) Theorem Zero of \(\vee\): p \(\vee\) true \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) true
(7) Theorem Identity of \(\vee\) p \(\vee\) false \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p
(8) Theorem Distributivity of \(\frac{\vee}{\vee}\): p \(\vee\) ( q \(\vee\) r) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) (p \(\vee\) q) \(\vee\) (p \(\vee\) r)
(9) Theorem p \(\vee\) q \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p \(\vee\) \(\neg\)q \(\equiv\) p
No comments:
Post a Comment