1+q2(1−q)+q6(1−q)(1−q2)+⋯=∞∏j=01(1−q5j+2)(1−q5j+3),for|q|<1.
∇×→B−1c∂→E∂t=4πc→j∇⋅→E=4πρ∇×→E+1c∂→B∂t=→0∇⋅→B=0
embedded latex
More MathJax tests. Embedding formulae inside sentences
The formula ∏∞j=01(1−q5j+2)(1−q5j+3),for|q|<1. embedded in the middle of a sentence
This expression √3x−1+(1+x)2 is an example of an inline equation.
The question is Prove Universal Instantiation i.e
Prove (∀x|:P)⇒P[x:=E]
LHS (∀x|:P)
= notation expansion
(∀x|true:P)
= true ≡a∨¬a
(∀x|(x=E)∨(x≠E):P)
= Axiom: Range Split (⋆|R∨S:P)≡(⋆|R:P)⋆(⋆|S:P) here ⋆=∧. notated as ∀
(∀x|(x=E):P)∧(∀x|(x≠E):P)
⇒Theorem:a∧b⇒a
(∀x|(x=E):P)
= Single Point Axiom (⋆y|(y=F):Q)≡ Q [ y := F ]
P [ x := E ] = RHS.
QED
No comments:
Post a Comment