prev: Table of Precedences
E [x := R] or ExR denotes an expression that is the same as E, but with all the occurrences of x replaced by "(R)". Unnecessary parentheses maybe removed after substitution.
e.g: (z + y) [z := 5] becomes ((5) + y) becomes (by removing unnecessary parentheses) (5 + y)
If x is a list of *distinct* x1,x2,...xn of variables and R a list R1 ,R2,...Rn of expressions then ExR denotes the *simultaneous* replacement in E of the variables of x by corresponding expressions of R, each expression being enclosed by parentheses.
(z + y) [z,y := 5,6] becomes ((5) + (6)) becomes (by removing unnecessary parentheses) (5 + 6)
next: Inference Rules
Friday, September 23, 2011
EQ 1: Precedences
Precedences (from high to low)
(1) [x := e] (Textual Substitution)
(2) . (function application)
(3) Unary Prefix Operators + - ¬ # ~ P
(4) **
(5) ∗ / ÷ mod gcd
(6) + - ∪ ∩ × ∘ ∙
(7) ↓ ↑
(8) #
(9) ▹ ◃ ^
(10) = < > ϵ ⊂ ⊆ ⊃ ⊇ |
(11) ∨ ∧
(12) ⇒ ⇐
(13) ≡
Notes: All non associative prefix binary operators associate to the left, except ** , ◃ and ⇒ which associate to the right.
All operators on lines 10, 12 and 13 may have a slash / through them to denote negation.
Thus b ≢ c is equivalent to \neg ( b \equiv c )
A core subset of the above, omitting unnecessary symbols, which is used to prove the theorems of the logic itself is as follows
(a) [x := e] (Textual Substitution)
(b) . (function application)
(c) \neg
(d) \ast /
(e) =
(f) \vee \wedge
(g) \Rightarrow \Leftarrow
(h) \equiv
prev: next: Textual Substitution
(1) [x := e] (Textual Substitution)
(2) . (function application)
(3) Unary Prefix Operators + - ¬ # ~ P
(4) **
(5) ∗ / ÷ mod gcd
(6) + - ∪ ∩ × ∘ ∙
(7) ↓ ↑
(8) #
(9) ▹ ◃ ^
(10) = < > ϵ ⊂ ⊆ ⊃ ⊇ |
(11) ∨ ∧
(12) ⇒ ⇐
(13) ≡
Notes: All non associative prefix binary operators associate to the left, except ** , ◃ and ⇒ which associate to the right.
All operators on lines 10, 12 and 13 may have a slash / through them to denote negation.
Thus b ≢ c is equivalent to \neg ( b \equiv c )
A core subset of the above, omitting unnecessary symbols, which is used to prove the theorems of the logic itself is as follows
(a) [x := e] (Textual Substitution)
(b) . (function application)
(c) \neg
(d) \ast /
(e) =
(f) \vee \wedge
(g) \Rightarrow \Leftarrow
(h) \equiv
prev: next: Textual Substitution
Wednesday, September 21, 2011
Testing Latex Rendering
Just some random text
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} |q|<1.
\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
embedded latex
More MathJax tests. Embedding formulae inside sentences
The formula \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} |q|<1. embedded in the middle of a sentence
This expression \sqrt{3x-1}+(1+x)^2 is an example of an inline equation.
The question is Prove Universal Instantiation i.e
Prove (\forall x |: P) \Rightarrow P [ x := E ]
LHS \hspace{2 cm } (\forall x |: P)
= \hspace{0.5 cm } notation expansion
\hspace{2 cm } (\forall x | true : P)
= \hspace{0.5 cm } true \equiv a \vee \neg a
\hspace{2 cm } (\forall x | (x = E) \vee (x \neq E) : P)
= \hspace{0.5 cm } Axiom: Range Split (\star | R \vee S: P) \equiv (\star | R : P) \star (\star | S : P) here \star = \wedge. notated as \forall
\hspace{2 cm } (\forall x | (x = E) : P) \wedge (\forall x | (x \neq E) : P)
\Rightarrow \hspace{0.5 cm } Theorem: a \wedge b \Rightarrow a
\hspace{2 cm } (\forall x | (x = E) : P)
= \hspace{0.5 cm } Single Point Axiom (\star y | (y = F) : Q) \equiv Q [ y := F ]
\hspace{2 cm } P [ x := E ] = RHS.
QED
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} |q|<1.
\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
embedded latex
More MathJax tests. Embedding formulae inside sentences
The formula \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} |q|<1. embedded in the middle of a sentence
This expression \sqrt{3x-1}+(1+x)^2 is an example of an inline equation.
The question is Prove Universal Instantiation i.e
Prove (\forall x |: P) \Rightarrow P [ x := E ]
LHS \hspace{2 cm } (\forall x |: P)
= \hspace{0.5 cm } notation expansion
\hspace{2 cm } (\forall x | true : P)
= \hspace{0.5 cm } true \equiv a \vee \neg a
\hspace{2 cm } (\forall x | (x = E) \vee (x \neq E) : P)
= \hspace{0.5 cm } Axiom: Range Split (\star | R \vee S: P) \equiv (\star | R : P) \star (\star | S : P) here \star = \wedge. notated as \forall
\hspace{2 cm } (\forall x | (x = E) : P) \wedge (\forall x | (x \neq E) : P)
\Rightarrow \hspace{0.5 cm } Theorem: a \wedge b \Rightarrow a
\hspace{2 cm } (\forall x | (x = E) : P)
= \hspace{0.5 cm } Single Point Axiom (\star y | (y = F) : Q) \equiv Q [ y := F ]
\hspace{2 cm } P [ x := E ] = RHS.
QED
Subscribe to:
Posts (Atom)