(0) Notation: (∧ x | R : P) ≡ (∀ x | R : P)
(1) Axiom: Trading: (∀ x | R : P) ≡ (∀ x |: R ⇒ P)
Trading Theorems
(2) Theorem (∀ x | R : P) ≡ (∀ x |: ¬R ∨ P)
(3)Theorem (∀ x | R : P) ≡ (∀ x |: R ∨ P ≡ P)
(4)Theorem (∀ x | R : P) ≡ (∀ x |: R ∧ P ≡ R)
(5) Theorem (∀ x | R ∧ S : P) ≡ (∀ x | S : R ⇒ P)
(6) Theorem (∀ x | R ∧ S : P) ≡ (∀ x | S : ¬R ∨ P)
(7)Theorem (∀ x | R ∧ S : P) ≡ (∀ x | S : R ∨ P ≡ P)
(8)Theorem (∀ x | R ∧ S: P) ≡ (∀ x | S : R ∧ P ≡ R)
(9) Axiom: Distributivity ∨∀ Q ∨ (∀ x | R : P) ≡ (∀ x | R : P ∨ Q)
not-occurs-free(x,Q)
(10)Theorem: (∀ x | R :P) ≡ (∀ x |: ¬R) ∨ P
not-occurs-free(x,P)
(11) Theorem: Distributivity ∧∀ (∃x |:R) ⇒ [(∀ x | R : P ∧ Q)] ≡ (∀ x | R : P) ∧ Q]
not-occurs-free(x,Q)
Be careful using this theorem. A conjunct can be moved outside the scope of the quantification only if the Range is not everywhere false
(12) Theorem: (∀ x | R : true) ≡ true
(13) Theorem: (∀ x | R : P ≡ Q) ⇒ [(∀ x | R : P ) ⇒ (∀ x | R : Q ) ]
(14) Theorem: Range Weakening/Strengthening (∀ x | R ∨ S : P ) ⇒ (∀ x | R : P )
(15) Theorem: Body Weakening/Strengthening (∀ x | R : P ∧ Q ) ⇒ (∀ x | R : P )
(16) Theorem: Monotonicity of ∀:
(a) ∀ is antimonotonic in its range: (∀ x | R : A ⇒ B ) ⇒ [(∀ x | A : P ) ⇐ (∀ x | B : P)]
(b) ∀ is monotonic in its body: (∀ x | R : A ⇒ B ) ⇒ [(∀ x | R : A ) ⇒ (∀ x | R : B)]
(17) Instantiation (∀ x |: P) ⇒ P [x := e]
(18) MetaTheorem: P is a theorem ≡ (∀ x |: P) is a theorem
No comments:
Post a Comment