Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, October 5, 2011

EQ 10 Universal Quantification

(0) Notation: ( x | R : P) ( x | R : P)

(1) Axiom: Trading: ( x | R : P) ( x |: R P)

Trading Theorems

(2) Theorem ( x | R : P) ( x |: ¬R P)

(3)Theorem ( x | R : P) ( x |: R P P)

(4)Theorem ( x | R : P) ( x |: R P R)

(5) Theorem ( x | R S : P) ( x | S : R P)

(6) Theorem ( x | R S : P) ( x | S : ¬R P)

(7)Theorem ( x | R S : P) ( x | S : R P P)

(8)Theorem ( x | R S: P) ( x | S : R P R)

(9) Axiom: Distributivity Q ( x | R : P) ( x | R : P Q)
not-occurs-free(x,Q)

(10)Theorem: ( x | R :P) ( x |: ¬R) P
not-occurs-free(x,P)

(11) Theorem: Distributivity (x |:R) [( x | R : P Q)] ( x | R : P) Q]
not-occurs-free(x,Q)

Be careful using this theorem. A conjunct can be moved outside the scope of the quantification only if the Range is not everywhere false

(12) Theorem: ( x | R : true) true

(13) Theorem: ( x | R : P Q) [( x | R : P ) ( x | R : Q ) ]

(14) Theorem: Range Weakening/Strengthening ( x | R S : P ) ( x | R : P )

(15) Theorem: Body Weakening/Strengthening ( x | R : P Q ) ( x | R : P )

(16) Theorem: Monotonicity of :
(a) is antimonotonic in its range: ( x | R : A B ) [( x | A : P ) ( x | B : P)]
(b) is monotonic in its body: ( x | R : A B ) [( x | R : A ) ( x | R : B)]

(17) Instantiation ( x |: P) P [x := e]

(18) MetaTheorem: P is a theorem ( x |: P) is a theorem

No comments:

Post a Comment