(1) Axiom: Golden Rule: p ∧ q ≡ p ∨ q ≡ p ≡ q
(2) Theorem Symmetry of ∧: p ∧ q ≡ q ∧ p
(3) Theorem Associativity of ∧: p ∧ ( q ∧ r) ≡ (p ∧ q) ∧ r
(4) Theorem Idempotency of ∧: p ∧ p ≡ p
(5) Theorem Identity of ∧: p ∧ true ≡ p
(6) Theorem Zero of ∧: p ∧ false ≡ false
(7) Theorem Distributivity of ∧∧: p ∧ ( q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
(8) Theorem Contradiction: p ∧ ¬p ≡ false
(9) Theorem Absorption 1: p ∧ ( p ∨ q) ≡ p
(10) Theorem Absorption 2: p ∧ (¬ p ∨ q) ≡ p ∧ q
(11) Theorem Absorption 3: p ∨ ( p ∧ q) ≡ p
(12) Theorem Absorption 4: p ∨ (¬ p ∧ q) ≡ p ∨ q
(13) Theorem Distributivity of ∧∨: p ∧ ( q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(14) Theorem Distributivity of ∨∧: p ∨ ( q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
(15) Theorem De Morgan 1 ¬ (p ∧ q) ≡ (¬p ∨¬ q)
(16) Theorem De Morgan 2 ¬ (p ∨ q) ≡ (¬p ∧¬ q)
(17) Theorem p ∧ q ≡ p ∧ ¬q ≡¬ p
(18) Theorem p ∧ ( q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p
(19) Theorem p ∧ ( q ≡ p) ≡ p ∧ q
(20) Theorem Replacement ( p ≡ q) ∧ ( r ≡ p) ≡ ( p ≡ q) ∧ ( r ≡ q)
(21) Theorem Definition of ≡: ( p ≡ q) ≡ ( p ∧ q) ∨ (¬ p ∧ ¬q)
(22) Theorem Exclusive Or: ( p ≢ q) ≡ ( p ∧ ¬q) ∨ (¬ p ∧ q)
(23) Theorem (p ∧ q) ∧ r ≡ p ≡ q ≡ r ≡ p ∨ q ≡ q ∨ r ≡ p ∨ r ≡ p ∨ q ∨ r
No comments:
Post a Comment