Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, October 5, 2011

EQ 11 Existential Quantification

(0) Notation ( x | R : P ) ( x | R : P )

(1) Axiom: Generalized deMorgan: ( x | R : P) ¬( x | R : ¬ P)

(2) Theorem: Generalized deMorgan 1 : ¬ ( x | R : ¬P) ( x | R : P)

(3) Theorem: Generalized deMorgan 2 : ¬ ( x | R : P) ( x | R : ¬ P)

(4) Theorem: Generalized deMorgan 3 : ( x | R : ¬ P) ¬ ( x | R : P)

(5) Theorem: Trading 1: ( x | R : P) ( x | : R P)

(6) Theorem: Trading 2: ( x | S R : P) ( x | S : R P)

(7) Theorem: Distributivity ( x | R : P) Q ( x | R : P Q)
not-occurs-free(x,Q)

(8) Theorem: ( x | R : P) ( x |: R ) P
not-occurs-free(x,P)

(9) Theorem: Distributivity (x |:R) [( x | R : P Q)] ( x | R : P) Q]
not-occurs-free(x,Q)

(10) Theorem: ( x | R : false) false

(11) Theorem: Range Weakening: ( x | R : P) ( x | R S : P)

(12) Theorem: Body Weakening: ( x | R : P) ( x | R : P Q)

(13) Theorem: Monotonicity of
is monotonic in both body and range
(a) ( x | R : A B ) [ ( x | A : P) ( x | B : P)]
(b) ( x | R : A B ) [ ( x | R : A) ( x | R : B)]

(14) Theorem: P[ x := e] ( x |: P)

(15) Theorem: Interchange of Quantifications
( x | R ( y | S : P)) ( y | S ( x | R : P))
not-occurs-free (x,S) not-occurs-free(y, R)

Note: only when encloses . The implication doesn't hold the other way.

(16) Meta Theorem Witness:
( x | R : P) Q is a theorem (R P)[x := ˆx] Q is a theorem,
not-occurs-free(ˆx, [P,Q,R])
(a) often used when ( x | R : P) is known and need to prove Q.
(b) with multiple statements, use distinct witnesses

No comments:

Post a Comment