(0) Notation (∨ x | R : P ) ≡ (∃ x | R : P )
(1) Axiom: Generalized deMorgan: (∃ x | R : P) ≡ ¬( ∀ x | R : ¬ P)
(2) Theorem: Generalized deMorgan 1 : ¬ (∃ x | R : ¬P) ≡ ( ∀ x | R : P)
(3) Theorem: Generalized deMorgan 2 : ¬ (∃ x | R : P) ≡ ( ∀ x | R : ¬ P)
(4) Theorem: Generalized deMorgan 3 : (∃ x | R : ¬ P) ≡ ¬ ( ∀ x | R : P)
(5) Theorem: Trading 1: (∃ x | R : P) ≡ ( ∃ x | : R ∧ P)
(6) Theorem: Trading 2: (∃ x | S ∧ R : P) ≡ ( ∃ x | S : R ∧ P)
(7) Theorem: Distributivity ∧∃ (∃ x | R : P) ∧ Q ≡ (∃ x | R : P ∧ Q)
not-occurs-free(x,Q)
(8) Theorem: (∃ x | R : P) ≡ (∃ x |: R ) ∧ P
not-occurs-free(x,P)
(9) Theorem: Distributivity ∨∃ (∃x |:R) ⇒ [(∃ x | R : P ∨ Q)] ≡ (∃ x | R : P) ∨ Q]
not-occurs-free(x,Q)
(10) Theorem: (∃ x | R : false) ≡ false
(11) Theorem: Range Weakening: (∃ x | R : P) ≡ (∃ x | R ∨ S : P)
(12) Theorem: Body Weakening: (∃ x | R : P) ≡ (∃ x | R : P ∨ Q)
(13) Theorem: Monotonicity of ∃
∃ is monotonic in both body and range
(a) (∀ x | R : A ⇒ B ) ⇒ [ (∃ x | A : P) ⇒ (∃ x | B : P)]
(b) (∀ x | R : A ⇒ B ) ⇒ [ (∃ x | R : A) ⇒ (∃ x | R : B)]
(14) Theorem: P[ x := e] ⇒ (∃ x |: P)
(15) Theorem: Interchange of Quantifications
(∃ x | R (∀ y | S : P)) ⇒ (∀ y | S (∃ x | R : P))
not-occurs-free (x,S) ∧ not-occurs-free(y, R)
Note: only when ∃ encloses ∀. The implication doesn't hold the other way.
(16) Meta Theorem Witness:
(∃ x | R : P) ⇒ Q is a theorem ≡ (R ∧ P)[x := ˆx] ⇒ Q is a theorem,
not-occurs-free(ˆx, [P,Q,R])
(a) often used when (∃ x | R : P) is known and need to prove Q.
(b) with multiple statements, use distinct witnesses
No comments:
Post a Comment