(1) Axiom: Mathematical Induction Over N. Form 1
( ∀ n:N |: ( ∀i | 0 ≤ i < n: Pi) ⇒ Pn ) ⇒ ( ∀ n : N : Pn)
used to prove Universal Quantification By Induction
(2) Theorem: Mathematical Induction Over N. Form 2
( ∀ n:N |: ( ∀i | 0 ≤ i < n: Pi) ⇒ Pn ) ≡ ( ∀ n : N : Pn)
used to prove properties of Induction
(3) Theorem: Mathematical Induction Over N. Form 3
P0 ∧ ( ∀ n:N |: ( ∀i | 0 ≤ i ≤ n: Pi ) ⇒ Pn+1 ) ⇒ ( ∀ n : N : Pn)
restatement of (1) used for inductive proofs
(4) Parts of Mathematical Induction axiom
P0 is the base case
( ∀ n:N |: ( ∀i | 0 ≤ i ≤ n: Pi ) ⇒ Pn+1 ) ⇒ ( ∀ n : N : Pn) is the inductive case
( ∀ n:N |: ( ∀i | 0 ≤ i ≤ n: Pi ) ⇒ Pn+1 ) is the inductive hypothesis
(5) Normal Proof Method
(1) Prove Base Case. P0
(2) Assume arbitrary n ≥ 0
(3) Assume Inductive Case ( ∀i | 0 ≤ i ≤ n: Pi )
(4) Prove Pn+1
(6) Induction starting at other integers
Let a sequence of integers start at n0 Then Inductive Theorem is
Pn0 ∧ ( ∀ n:n0≤n|: ( ∀i | n0≤ i ≤ n: Pi ) ⇒ Pn+1 ) ⇒ ( ∀ n : n0≤n : Pn)
No comments:
Post a Comment