Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, October 4, 2011

EQ 8 Proof By Induction

(1) Axiom: Mathematical Induction Over N. Form 1

( n:N |: ( i | 0 i < n: Pi) Pn ) ( n : N : Pn)

used to prove Universal Quantification By Induction


(2) Theorem: Mathematical Induction Over N. Form 2

( n:N |: ( i | 0 i < n: Pi) Pn ) ( n : N : Pn)

used to prove properties of Induction

(3) Theorem: Mathematical Induction Over N. Form 3

P0 ( n:N |: ( i | 0 i n: Pi ) Pn+1 ) ( n : N : Pn)

restatement of (1) used for inductive proofs

(4) Parts of Mathematical Induction axiom

P0 is the base case

( n:N |: ( i | 0 i n: Pi ) Pn+1 ) ( n : N : Pn) is the inductive case

( n:N |: ( i | 0 i n: Pi ) Pn+1 ) is the inductive hypothesis

(5) Normal Proof Method

(1) Prove Base Case. P0

(2) Assume arbitrary n 0

(3) Assume Inductive Case ( i | 0 i n: Pi )

(4) Prove Pn+1


(6) Induction starting at other integers

Let a sequence of integers start at n0 Then Inductive Theorem is

Pn0 ( n:n0n|: ( i | n0 i n: Pi ) Pn+1 ) ( n : n0n : Pn)

No comments:

Post a Comment