(1) Axiom: Definition of false: false \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) \(\neg\) true
(2) Axiom: Distributivity of \(\frac{\neg}{\equiv}\): \(\neg\) (p \(\equiv\) q) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) \(\neg\)p \(\equiv\) q
(3) Axiom: Definition \(\not\equiv\): (p \(\not\equiv\) q) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) \(\neg\)(p \(\equiv\) q)
(4) Theorem: \(\neg\)p \(\equiv\) q \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p \(\equiv\) \(\neg\)q
(5) Theorem: Double Negation: \(\neg\)\(\neg\)p \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p
(6) Theorem: Negation of false: \(\neg\)false \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) true
(7) Theorem: (p \(\not\equiv\) q) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) \(\neg\)p \(\equiv\) q
(8) Theorem: \(\neg\)p\(\equiv\)p\(\equiv\)false
(9) Theorem: Symmetry of \(\not\equiv\): p \(\not\equiv\) q \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) q \(\not\equiv\) p
(10) Theorem: Associativity of \(\not\equiv\): (p \(\not\equiv\) (q \(\not\equiv\) r)) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) ((p \(\not\equiv\) q ) \(\not\equiv\) r)
(11) Mutual Associativity: (p \(\not\equiv\) (q \(\equiv\) r)) \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) ((p \(\not\equiv\) q ) \(\equiv\) r)
(12) Mutual Interchangability: p \(\not\equiv\) q \(\equiv\) r \( \hspace{0.2 cm} \equiv \hspace{0.2 cm} \) p \(\equiv\) q \(\not\equiv\) r
No comments:
Post a Comment