(1) Axiom: Definition of false: false ≡ ¬ true
(2) Axiom: Distributivity of ¬≡: ¬ (p ≡ q) ≡ ¬p ≡ q
(3) Axiom: Definition ≢: (p ≢ q) ≡ ¬(p ≡ q)
(4) Theorem: ¬p ≡ q ≡ p ≡ ¬q
(5) Theorem: Double Negation: ¬¬p ≡ p
(6) Theorem: Negation of false: ¬false ≡ true
(7) Theorem: (p ≢ q) ≡ ¬p ≡ q
(8) Theorem: ¬p≡p≡false
(9) Theorem: Symmetry of ≢: p ≢ q ≡ q ≢ p
(10) Theorem: Associativity of ≢: (p ≢ (q ≢ r)) ≡ ((p ≢ q ) ≢ r)
(11) Mutual Associativity: (p ≢ (q ≡ r)) ≡ ((p ≢ q ) ≡ r)
(12) Mutual Interchangability: p ≢ q ≡ r ≡ p ≡ q ≢ r
No comments:
Post a Comment