(1) Axiom, Leibniz: (e = f) ⇒ Eze=Ezf
Note 1: difference between Leibniz Inference Rule and the Leibniz Axiom.
The inference rule states that if X = Y in all states then EzX=EzY in all states.
The axiom states that if (x = y) in one state then Ezx=Ezy in that state.
Note 2: the implication is one way. iow Eze=Ezf ⇏ (e = f)
e.g: Let E ≡ false ∧ zee . Here Eze=Ezf but e ≠ f
Substitution Theorems:
If an equality conjuncts or implies, or a conjunction with an equality as a conjunct implies , an Expression E containing one side of the equality, you can replace that part of E with the other side of the equality.
(2) Theorem: Substitution 1: (e = f) ∧ Eze≡ (e = f) ∧ Ezf
(3) Theorem: Substitution 2: (e = f) ⇒ Eze≡ (e = f) ⇒ Ezf
(4) Theorem: Substitution 3: q ∧ (e = f) ⇒ Eze≡ q ∧ (e = f) ⇒ Ezf
Replace By True Theorems:
If a variable conjuncts or implies, or a conjunction with a variable as a conjunct implies an expression E containing that variable, the occurences of the variable in the expression can be replaced by true
(5) Theorem Replace by true 1: p ∧ Ezp≡ p ∧ Eztrue
(6) Theorem: Replace by true 2: p ⇒ Ezp≡ p ⇒ Eztrue
(7) Theorem: Replace by true 3: q ∧ p ⇒ Ezp≡ q ∧ p ⇒ Eztrue
Example:
Prove p ∧ q ⇒ ( p ≡ q)
p ∧ q ⇒ ( p ≡ q)
= recognize pattern. conjunction with a variable (p) on one side implying an expression containing the same variable
invoke Theorem (6) above, replace p in expression by true
p ∧ q ⇒ ( true ≡ q)
= recognize pattern. conjunction with a variable (q) on one side implying an expression containing the same variable
invoke Theorem (6) above, replace q in expression by true
p ∧ q ⇒ ( true ≡ true)
= Theorem: true is the identity of ≡, m ≡ m ≡ true
p ∧ q ⇒ true
= Theorem: true is the Right Zero of ⇒, m ⇒ true ≡ true
true
Replace By False Theorems:
If an Expression E containing a variable p disjuncts p, implies p or implies a disjunction with p on one side,p can be replaced by false in the expression
(8) Theorem: Replace by False 1: Ezp ∨ p ≡ Ezfalse ∨ p
(9) Theorem: Replace by False 2: Ezp ⇒ p ≡ Ezfalse ⇒ p
(10) Theorem: Replace by False 2: Ezp ⇒ p ∨ q ≡ Ezfalse ⇒ p ∨ q
(11) Theorem: Shannon: Ezp ≡ ( p ∧ Eztrue ) ∨ ( ¬ p ∧ Ezfalse )
No comments:
Post a Comment